期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1998
卷号:95
期号:7
页码:3748-3751
DOI:10.1073/pnas.95.7.3748
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:The mariner transposable element is capable of interplasmid transposition in the embryonic soma of the yellow fever mosquito, Aedes aegypti. To determine if this demonstrated mobility could be utilized to genetically transform the mosquito, a modified mariner element marked with a wild-type allele of the Drosophila melanogaster cinnabar gene was microinjected into embryos of a kynurenine hydroxylase-deficient, white-eyed recipient strain. Three of 69 fertile male founders resulting from the microinjected embryos produced families with colored-eyed progeny individuals, a transformation rate of 4%. The transgene-mediated complementation of eye color was observed to segregate in a Mendelian manner, although one insertion segregates with the recessive allele (female-determining) of the sex-determining locus, and a separate insertion is homozygous lethal. Molecular analysis of selected transformed families demonstrated that a single complete copy of the construct had integrated independently in each case and that it had done so in a transposase-mediated manner. The availability of a mariner transformation system greatly enhances our ability to study and manipulate this important vector species.