期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1999
卷号:96
期号:13
页码:7587-7591
DOI:10.1073/pnas.96.13.7587
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:The brain's sensory processing systems are modified during perceptual learning. To learn more about the spatial organization of learning-related modifications, we trained rats to utilize the sensory signal from a single intact whisker to carry out a behavioral task. Once a rat had mastered the task, we clipped its "trained" whisker and attached a "prosthetic" one to a different whisker stub. We then tested the rat to determine how quickly it could relearn the task by using the new whisker. We observed that rats were immediately able to use the prosthetic whisker if it were attached to the stub of the trained whisker but not if it were attached to a different stub. Indeed, the greater the distance between the trained and prosthetic whisker, the more trials were needed to relearn the task. We hypothesized that this "transfer" of learning between whiskers might depend on how much the representations of individual whiskers overlap in primary somatosensory cortex. Testing this hypothesis by using 100-electrode cortical recordings, we found that the overlap between the cortical response patterns of two whiskers accounted well for the transfer of learning between them: The correlation between the electrophysiological and behavioral data was very high (r = 0.98). These findings suggest that a topographically distributed memory trace for sensory-perceptual learning may reside in primary sensory cortex.