标题:The kinetoplast structure-specific endonuclease I is related to the 5′ exo/endonuclease domain of bacterial DNA polymerase I and colocalizes with the kinetoplast topoisomerase II and DNA polymerase β during replication
期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1999
卷号:96
期号:15
页码:8455-8460
DOI:10.1073/pnas.96.15.8455
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:The mitochondrial DNA (kinetoplast DNA) of the trypanosomatid Crithidia fasciculata has an unusual structure composed of minicircles and maxicircles topologically interlocked into a single network and organized in a disc-shaped structure at the base of the flagellum. We previously purified a structure-specific endonuclease (SSE1), based on its RNase H activity, that is enriched in isolated kinetoplasts. The endonuclease gene has now been cloned, sequenced, and found to be closely related to the 5' exonuclease domain of bacterial DNA polymerase I proteins. Although the protein does not contain a typical mitochondrial leader sequence, the enzyme is shown to colocalize with a type II DNA topoisomerase and a DNA polymerase {beta} at antipodal sites flanking the kinetoplast disc. Cell synchronization studies with an epitope-tagged construct show that the localization of the endonuclease to the antipodal sites varies in a cell cycle-dependent manner similar to that of the DNA polymerase {beta} [Johnson, C. E. & Englund, P. T. (1998) J. Cell Biol. 143, 911-919]. Immunofluorescent localization of SSE1 to the antipodal sites is only observed during kinetoplast replication. Together, these results suggest a point of control for kinetoplast DNA replication through the regulation of the availability of DNA replication proteins and a possible role for the antipodal sites in removal of RNA primers and the repair of gaps in newly replicated minicircles.