期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1999
卷号:96
期号:18
页码:10518-10523
DOI:10.1073/pnas.96.18.10518
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Vegetative incompatibility is a self/nonself-recognition system in fungi that has often been used for describing phenotypic diversity in fungal populations. A common hypothesis is that vegetative incompatibility polymorphisms are maintained by balancing selection. However, understanding the evolutionary significance of vegetative incompatibility and the factors that maintain these polymorphisms has been limited by a lack of knowledge of the underlying genetics of vegetative compatibility (vc) types. Genotypes of 64 vc types, controlled by six unlinked vegetative incompatibility (vic) loci, have been identified in the chestnut blight fungus, Cryphonectria parasitica. By interpreting vc type survey data in terms of vic genotypes, we estimated vic-allele frequencies and analyzed the multilocus genetic structure of 13 populations in Europe and 3 populations in the U.S. European populations have less vc type diversity than the US populations because of a combination of lower vic-allele diversity and limited recombination. Genotypic diversity of 10 populations in Italy correlated to the abundance of sexual structures; however, significant deviations from random mating suggest that either sexual reproduction may not contribute many offspring in these populations or that vic genes (or vic genotypes) are under selection. Most vic-allele frequencies deviated from 0.5, the equilibrium frequency predicted under frequency-dependent selection, providing no evidence for selection acting on these loci.