首页    期刊浏览 2025年02月27日 星期四
登录注册

文章基本信息

  • 标题:Characterization of a manganese-dependent regulatory protein, TroR, from Treponema pallidum
  • 本地全文:下载
  • 作者:James E. Posey ; John M. Hardham ; Steven J. Norris
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1999
  • 卷号:96
  • 期号:19
  • 页码:10887-10892
  • DOI:10.1073/pnas.96.19.10887
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Genome sequence analysis of Treponema pallidum, the causative agent of syphilis, suggests that this bacterium has a limited iron requirement with few, if any, proteins that require iron. Instead, T. pallidum may use manganese-dependent enzymes for metabolic pathways. This strategy apparently alleviates the necessity of T. pallidum to acquire iron from the host, thus overcoming iron limitation, which is a primary host defense. Interestingly, a putative metal-dependent regulatory protein, TroR, which has homology with the diphtheria toxin regulatory protein, DtxR, from Corynebacterium diphtheriae was identified from T. pallidum. We describe here the characterization of TroR, a regulatory protein. Mobility-shift DNA binding and DNase I footprint assays indicated that purified TroR bound to a 22-nt region of dyad symmetry that overlaps the -10 region of the promoter of the tro operon, which contains the genes for a putative metal transport system, the glycolytic enzyme phosphoglycerate mutase, and TroR. Unlike other metal-dependent regulatory proteins like diphtheria toxin regulatory protein and the ferric ion uptake regulator, Fur, which can be activated by divalent metals such as Fe2+, Mn2+, Co2+, Ni2+, and Zn2+, TroR is activated only by Mn2+. The TroR-Mn2+ complex binds its target sequence and blocks transcription of the troPO/lacZ fusion, suggesting that TroR acts as a metal-dependent repressor in vivo. In addition, TroR exists as a dimer in both its inactive (metal free) and active states as indicated by chemical crosslinking experiments. Based on these data, we propose that TroR represents a unique regulatory system for controlling gene expression in T. pallidum in response to Mn2+.
国家哲学社会科学文献中心版权所有