期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1999
卷号:96
期号:20
页码:11670-11675
DOI:10.1073/pnas.96.20.11670
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Plant mitochondrial genomes are highly recombinogenic, with a variety of species-specific direct and inverted repeats leading to in vivo accumulation of multiple DNA forms. In maize, the cox2 gene, which encodes subunit II of cytochrome c oxidase, lies immediately downstream of a 0.7-kilobase direct repeat, which is present in two copies in the 570-kilobase master chromosome. Promoters for cox2 exist upstream of both of these copies, in regions we have termed A and B. Three region B promoters are active for cox2 transcription in the master chromosome, whereas two region A promoters are active for cox2 transcription after recombination across the direct repeats. We have measured the proportion of genomes carrying region A or B upstream of cox2 in maize seedlings and found a ratio of approximately 1:6. Promoter strength, based on run-on transcription assays, shows a ratio of 1:4 for region A to region B promoters. These data allowed us to predict the relative contributions of region A and B to mitochondrial transcript accumulation, based on a simple product of genome-form abundance and promoter strength. When promoter use was determined by using quantitative reverse transcriptase-PCR, however, we found that region A promoters were used at an unexpectedly high rate when upstream of cox2 and used less than expected when not upstream of cox2. Thus, the use of this set of promoters seems to respond to genomic context. These results suggest a role for intragenomic and intergenomic recombination in regulating plant mitochondrial gene expression.