首页    期刊浏览 2024年07月06日 星期六
登录注册

文章基本信息

  • 标题:Energy-based de novo protein folding by conformational space annealing and an off-lattice united-residue force field: Application to the 10-55 fragment of staphylococcal protein A and to apo calbindin D9K
  • 本地全文:下载
  • 作者:Jooyoung Lee ; Adam Liwo ; Harold A. Scheraga
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1999
  • 卷号:96
  • 期号:5
  • 页码:2025-2030
  • DOI:10.1073/pnas.96.5.2025
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The conformational space annealing (CSA) method for global optimization has been applied to the 10-55 fragment of the B-domain of staphylococcal protein A (protein A) and to a 75-residue protein, apo calbindin D9K (PDB ID code 1CLB), by using the UNRES off-lattice united-residue force field. Although the potential was not calibrated with these two proteins, the native-like structures were found among the low-energy conformations, without the use of threading or secondary-structure predictions. This is because the CSA method can find many distinct families of low-energy conformations. Starting from random conformations, the CSA method found that there are two families of low-energy conformations for each of the two proteins, the native-like fold and its mirror image. The CSA method converged to the same low-energy folds in all cases studied, as opposed to other optimization methods. It appears that the CSA method with the UNRES force field, which is based on the thermodynamic hypothesis, can be used in prediction of protein structures in real time.
国家哲学社会科学文献中心版权所有