期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1999
卷号:96
期号:8
页码:4256-4261
DOI:10.1073/pnas.96.8.4256
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Taxol (paclitaxel), a complex diterpene obtained from the Pacific yew, Taxus brevifolia, is arguably the most important new drug in cancer chemotherapy. The mechanism of cytotoxic action for paclitaxel--i.e., the stabilization of microtubules leading to mitotic arrest--is now shared by four recently identified natural products, eleutherobin, epothilones A and B, and discodermolide. Their ability to competitively inhibit [3H]paclitaxel binding to microtubules strongly suggests the existence of a common binding site. Recently, we have developed nonaromatic analogues of paclitaxel that maintain high cytotoxicity and tubulin binding (e.g., nonataxel). We now propose a common pharmacophore that unites paclitaxel, nonataxel, the epothilones, eleutherobin, and discodermolide, and rationalizes the extensive structure-activity relationship data pertinent to these compounds. Insights from the common pharmacophore have enabled the development of a hybrid construct with demonstrated cytotoxic and tubulin-binding activity.