首页    期刊浏览 2025年02月25日 星期二
登录注册

文章基本信息

  • 标题:確率モデルに基づくロボットによる概念・言語獲得
  • 本地全文:下载
  • 作者:Tomoaki Nakamura ; Takayuki Nagai
  • 期刊名称:認知科学
  • 印刷版ISSN:1341-7924
  • 电子版ISSN:1881-5995
  • 出版年度:2017
  • 卷号:24
  • 期号:1
  • 页码:23-32
  • DOI:10.11225/jcss.24.23
  • 出版社:Japanese Cognitive Science Society
  • 摘要:In this study, we define concepts as categories into which a robot classifies perceptual information obtained through interaction with others and the environment, and the inference of unobserved information through the concepts is defined as understanding. Furthermore, a robot can infer unobserved perceptual information from words by con- necting concepts and words. This inference is the understanding of word meanings. We propose probabilistic models that enable robots to learn concepts and language. In this paper, we present an overview of the proposed models.
  • 关键词:concept formation ; language acquisition ; latent Dirichlet allocation ; multimodal categorization
国家哲学社会科学文献中心版权所有