首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:A Review of Towered Big-Data Service Model for Biomedical Text-Mining Databases
  • 本地全文:下载
  • 作者:Alshreef Abed ; Jingling Yuan ; Lin Li
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2017
  • 卷号:8
  • 期号:8
  • DOI:10.14569/IJACSA.2017.080804
  • 出版社:Science and Information Society (SAI)
  • 摘要:The rapid growth of biomedical informatics has drawn increasing popularity and attention. The reason behind this are the advances in genomic, new molecular, biomedical approaches and various applications like protein identification, patient medical records, genome sequencing, medical imaging and a huge set of biomedical research data are being generated day to day. The increase of biomedical data consists of both structured and unstructured data. Subsequently, in a traditional database system (structured data), managing and extracting useful information from unstructured-biomedical data is a tedious job. Hence, mechanisms, tools, processes, and methods are necessary to apply on unstructured biomedical data (text) to get the useful business data. The fast development of these accumulations makes it progressively troublesome for people to get to the required information in an advantageous and viable way. Text mining can help us mine information and knowledge from a mountain of text, and is now widely applied in biomedical research. Text mining is not a new technology, but it has recently received spotlight attention due to the emergence of Big Data. The applications of text mining are diverse and span to multiple disciplines, ranging from biomedicine to legal, business intelligence and security. In this survey paper, the researcher identifies and discusses biomedical data (text) mining issues, and recommends a possible technique to cope with possible future growth.
  • 关键词:Big data; biomedical data; text mining; information retrieval; feature extraction
国家哲学社会科学文献中心版权所有