首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:A Note on Amortized Branching Program Complexity
  • 本地全文:下载
  • 作者:Aaron Potechin
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:79
  • 页码:4:1-4:12
  • DOI:10.4230/LIPIcs.CCC.2017.4
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In this paper, we show that while almost all functions require exponential size branching programs to compute, for all functions f there is a branching program computing a doubly exponential number of copies of f which has linear size per copy of f. This result disproves a conjecture about non-uniform catalytic computation, rules out a certain type of bottleneck argument for proving non-monotone space lower bounds, and can be thought of as a constructive analogue of Razborov's result that submodular complexity measures have maximum value O(n).
  • 关键词:branching programs; space complexity; amortization
国家哲学社会科学文献中心版权所有