首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Easiness Amplification and Uniform Circuit Lower Bounds
  • 本地全文:下载
  • 作者:Cody D. Murray ; R. Ryan Williams
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:79
  • 页码:8:1-8:21
  • DOI:10.4230/LIPIcs.CCC.2017.8
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We present new consequences of the assumption that time-bounded algorithms can be "compressed" with non-uniform circuits. Our main contribution is an "easiness amplification" lemma for circuits. One instantiation of the lemma says: if n^{1+e}-time, tilde{O}(n)-space computations have n^{1+o(1)} size (non-uniform) circuits for some e > 0, then every problem solvable in polynomial time and tilde{O}(n) space has n^{1+o(1)} size (non-uniform) circuits as well. This amplification has several consequences: * An easy problem without small LOGSPACE-uniform circuits. For all e > 0, we give a natural decision problem, General Circuit n^e-Composition, that is solvable in about n^{1+e} time, but we prove that polynomial-time and logarithmic-space preprocessing cannot produce n^{1+o(1)}-size circuits for the problem. This shows that there are problems solvable in n^{1+e} time which are not in LOGSPACE-uniform n^{1+o(1)} size, the first result of its kind. We show that our lower bound is non-relativizing, by exhibiting an oracle relative to which the result is false. * Problems without low-depth LOGSPACE-uniform circuits. For all e > 0, 1 0, we give a natural circuit composition problem and show that if it has tilde{O}(n)-size circuits (uniform or not), then every problem solvable in 2^{O(n)} time and 2^{O(sqrt{n log n})} space (simultaneously) has 2^{O(sqrt{n log n})}-size circuits (uniform or not). We also show the same consequence holds assuming SAT has tilde{O}(n)-size circuits. As a corollary, if n^{1.1} time computations (or O(n) nondeterministic time computations) have tilde{O}(n)-size circuits, then all problems in exponential time and subexponential space (such as quantified Boolean formulas) have significantly subexponential-size circuits. This is a new connection between the relative circuit complexities of easy and hard problems.
  • 关键词:uniform circuit complexity; time complexity; space complexity; non-relativizing; amplification
国家哲学社会科学文献中心版权所有