摘要:Let D be a b-wise independent distribution over {0,1}^m. Let E be the "noise" distribution over {0,1}^m where the bits are independent and each bit is 1 with probability eta/2. We study which tests f: {0,1}^m -> [-1,1] are epsilon-fooled by D+E, i.e., |E[f(D+E)] - E[f(U)]| [-1,1] given by the product of k bounded functions on disjoint n-bit inputs with error epsilon = k(1-eta)^{Omega(b^2/m)}, where m = nk and b >= n. This bound is tight when b = Omega(m) and eta >= (log k)/m. For b >= m^{2/3} log m and any constant eta the distribution D+E also 0.1-fools log-space algorithms. We develop two applications of this type of results. First, we prove communication lower bounds for decoding noisy codewords of length m split among k parties. For Reed-Solomon codes of dimension m/k where k = O(1), communication Omega(eta m) - O(log m) is required to decode one message symbol from a codeword with eta m errors, and communication O(eta m log m) suffices. Second, we obtain pseudorandom generators. We can epsilon-fool product tests f: ({0,1}^n)^k -> [-1,1] under any permutation of the bits with seed lengths 2n + O~(k^2 log(1/epsilon)) and O(n) + O~(sqrt{nk log 1/epsilon}). Previous generators have seed lengths >= nk/2 or >= n sqrt{n k}. For the special case where the k bounded functions have range {0,1} the previous generators have seed length >= (n+log k)log(1/epsilon).