首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Streaming Algorithms for Maximizing Monotone Submodular Functions under a Knapsack Constraint
  • 本地全文:下载
  • 作者:Chien-Chung Huang ; Naonori Kakimura ; Yuichi Yoshida
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:81
  • 页码:11:1-11:14
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2017.11
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In this paper, we consider the problem of maximizing a monotone submodular function subject to a knapsack constraint in the streaming setting. In particular, the elements arrive sequentially and at any point of time, the algorithm has access only to a small fraction of the data stored in primary memory. For this problem, we propose a (0.363-epsilon)-approximation algorithm, requiring only a single pass through the data; moreover, we propose a (0.4-epsilon)-approximation algorithm requiring a constant number of passes through the data. The required memory space of both algorithms depends only on the size of the knapsack capacity and epsilon.
  • 关键词:submodular functions; single-pass streaming; multiple-pass streaming; constant approximation
国家哲学社会科学文献中心版权所有