摘要:Many problems in data mining and unsupervised machine learning take the form of minimizing a set function with cardinality constraints. More explicitly, denote by [n] the set {1,...,n} and let f(S) be a function from 2^[n] to R+. Our goal is to minimize f(S) subject to |S| = f(union(S,T)) >= 0 for any S and T. This immediately shows that expanding solution sets is (at least potentially) beneficial in terms of reducing the function value. But, monotonicity is not sufficient to ensure that any number of greedy extensions of a given solution would significantly reduce the objective function.
关键词:Weak Supermodularity; Greedy Algorithms; Machine Learning; Data Mining