首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:Greedy Minimization of Weakly Supermodular Set Functions
  • 本地全文:下载
  • 作者:Edo Liberty ; Maxim Sviridenko
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:81
  • 页码:19:1-19:11
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2017.19
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Many problems in data mining and unsupervised machine learning take the form of minimizing a set function with cardinality constraints. More explicitly, denote by [n] the set {1,...,n} and let f(S) be a function from 2^[n] to R+. Our goal is to minimize f(S) subject to |S| = f(union(S,T)) >= 0 for any S and T. This immediately shows that expanding solution sets is (at least potentially) beneficial in terms of reducing the function value. But, monotonicity is not sufficient to ensure that any number of greedy extensions of a given solution would significantly reduce the objective function.
  • 关键词:Weak Supermodularity; Greedy Algorithms; Machine Learning; Data Mining
国家哲学社会科学文献中心版权所有