首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Approximating Sparsest Cut in Low Rank Graphs via Embeddings from Approximately Low Dimensional Spaces
  • 本地全文:下载
  • 作者:Yuval Rabani ; Rakesh Venkat
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:81
  • 页码:21:1-21:14
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2017.21
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We consider the problem of embedding a finite set of points x_1, ... , x_n in R^d that satisfy l_2^2 triangle inequalities into l_1, when the points are approximately low-dimensional. Goemans (unpublished, appears in a work of Magen and Moharammi (2008) ) showed that such points residing in exactly d dimensions can be embedded into l_1 with distortion at most sqrt{d}. We prove the following robust analogue of this statement: if there exists a r-dimensional subspace Pi such that the projections onto this subspace satisfy sum_{i,j in [n]} norm{Pi x_i - Pi x_j}_2^2 >= Omega(1) * sum_{i,j \in [n]} norm{x_i - x_j}_2^2, then there is an embedding of the points into l_1 with O(sqrt{r}) average distortion. A consequence of this result is that the integrality gap of the well-known Goemans-Linial SDP relaxation for the Uniform Sparsest Cut problem is O(sqrt{r}) on graphs G whose r-th smallest normalized eigenvalue of the Laplacian satisfies lambda_r(G)/n >= Omega(1)*Phi_{SDP}(G). Our result improves upon the previously known bound of O(r) on the average distortion, and the integrality gap of the Goemans-Linial SDP under the same preconditions, proven in [Deshpande and Venkat, 2014], and [Deshpande, Harsha and Venkat 2016].
  • 关键词:Metric Embeddings; Sparsest Cut; Negative type metrics; Approximation Algorithms
国家哲学社会科学文献中心版权所有