摘要:We consider the problem of traveling among random points in Euclidean space, when only a random fraction of the pairs are joined by traversable connections. In particular, we show a threshold for a pair of points to be connected by a geodesic of length arbitrarily close to their Euclidean distance, and analyze the minimum length Traveling Salesperson Tour, extending the Beardwood-Halton-Hammersley theorem to this setting.