首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:CALF: Categorical Automata Learning Framework
  • 本地全文:下载
  • 作者:Gerco van Heerdt ; Matteo Sammartino ; Alexandra Silva
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:82
  • 页码:29:1-29:24
  • DOI:10.4230/LIPIcs.CSL.2017.29
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Automata learning is a technique that has successfully been applied in verification, with the automaton type varying depending on the application domain. Adaptations of automata learning algorithms for increasingly complex types of automata have to be developed from scratch because there was no abstract theory offering guidelines. This makes it hard to devise such algorithms, and it obscures their correctness proofs. We introduce a simple category-theoretic formalism that provides an appropriately abstract foundation for studying automata learning. Furthermore, our framework establishes formal relations between algorithms for learning, testing, and minimization. We illustrate its generality with two examples: deterministic and weighted automata.
  • 关键词:automata learning; category theory
国家哲学社会科学文献中心版权所有