摘要:We propose a practical algorithm for Streett automata model checking of higher-order recursion schemes (HORS), which checks whether the tree generated by a given HORS is accepted by a given Streett automaton. The Streett automata model checking of HORS is useful in the context of liveness verification of higher-order functional programs. The previous approach to Streett automata model checking converted Streett automata to parity automata and then invoked a parity tree automata model checker. We show through experiments that our direct approach outperforms the previous approach. Besides being able to directly deal with Streett automata, our algorithm is the first practical Streett or parity automata model checking algorithm that runs in time polynomial in the size of HORS, assuming that the other parameters are fixed. Previous practical fixed-parameter polynomial time algorithms for HORS could only deal with the class of trivial tree automata. We have confirmed through experiments that (a parity automata version of) our model checker outperforms previous parity automata model checkers for HORS.
关键词:Higher-order model checking; higher-order recursion schemes; Streett automata