首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Approximate Nearest Neighbor Search Amid Higher-Dimensional Flats
  • 本地全文:下载
  • 作者:Pankaj K. Agarwal ; Natan Rubin ; Micha Sharir
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:87
  • 页码:4:1-4:13
  • DOI:10.4230/LIPIcs.ESA.2017.4
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We consider the Approximate Nearest Neighbor (ANN) problem where the input set consists of n k-flats in the Euclidean Rd, for any fixed parameters k 0 is another prespecified parameter. We present an algorithm that achieves this task with n^{k+1}(log(n)/epsilon)^O(1) storage and preprocessing (where the constant of proportionality in the big-O notation depends on d), and can answer a query in O(polylog(n)) time (where the power of the logarithm depends on d and k). In particular, we need only near-quadratic storage to answer ANN queries amidst a set of n lines in any fixed-dimensional Euclidean space. As a by-product, our approach also yields an algorithm, with similar performance bounds, for answering exact nearest neighbor queries amidst k-flats with respect to any polyhedral distance function. Our results are more general, in that they also provide a tradeoff between storage and query time.
  • 关键词:Approximate nearest neighbor search; k-flats; Polyhedral distance functions; Linear programming queries
国家哲学社会科学文献中心版权所有