首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Faster Approximate Diameter and Distance Oracles in Planar Graphs
  • 本地全文:下载
  • 作者:Timothy M. Chan ; Dimitrios Skrepetos
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:87
  • 页码:25:1-25:13
  • DOI:10.4230/LIPIcs.ESA.2017.25
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We present an algorithm that computes a (1+varepsilon)-approximation of the diameter of a weighted, undirected planar graph of n vertices with non-negative edge lengths in O(nlog n(log n + (1/varepsilon)^5)) expected time, improving upon the O(n((1/varepsilon)^4 log^4(n) + 2^{O(1/varepsilon)}))-time algorithm of Weimann and Yuster [ICALP 2013]. Our algorithm makes two improvements over that result: first and foremost, it replaces the exponential dependency on 1/varepsilon with a polynomial one, by adapting and specializing Cabello's recent abstract-Voronoi-diagram-based technique [SODA 2017] for approximation purposes; second, it shaves off two logarithmic factors by choosing a better sequence of error parameters during recursion. Moreover, using similar techniques, we improve the (1+varepsilon)-approximate distance oracle of Gu and Xu [ISAAC 2015] by first replacing the exponential dependency on 1/varepsilon on the preprocessing time and space with a polynomial one and second removing a logarithmic factor from the preprocessing time.
  • 关键词:planar graphs; diameter; abstract Voronoi diagrams
国家哲学社会科学文献中心版权所有