首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Subexponential Parameterized Algorithms for Graphs of Polynomial Growth
  • 本地全文:下载
  • 作者:D{\'a}niel Marx ; Marcin Pilipczuk
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:87
  • 页码:59:1-59:15
  • DOI:10.4230/LIPIcs.ESA.2017.59
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We show that for a number of parameterized problems for which only 2^{O(k)} n^{O(1)} time algorithms are known on general graphs, subexponential parameterized algorithms with running time 2^{O(k^{1-1/(1+d)} log^2 k)} n^{O(1)} are possible for graphs of polynomial growth with growth rate (degree) d, that is, if we assume that every ball of radius r contains only O(r^d) vertices. The algorithms use the technique of low-treewidth pattern covering, introduced by Fomin et al. [FOCS 2016] for planar graphs; here we show how this strategy can be made to work for graphs of polynomial growth. Formally, we prove that, given a graph G of polynomial growth with growth rate d and an integer k, one can in randomized polynomial time find a subset A of V(G) such that on one hand the treewidth of G[A] is O(k^{1-1/(1+d)} log k), and on the other hand for every set X of vertices of size at most k, the probability that X is a subset of A is 2^{-O(k^{1-1/(1+d)} log^2 k)}. Together with standard dynamic programming techniques on graphs of bounded treewidth, this statement gives subexponential parameterized algorithms for a number of subgraph search problems, such as Long Path or Steiner Tree, in graphs of polynomial growth. We complement the algorithm with an almost tight lower bound for Long Path: unless the Exponential Time Hypothesis fails, no parameterized algorithm with running time 2^{k^{1-1/d-epsilon}}n^{O(1)} is possible for any positive epsilon and any integer d >= 3.
  • 关键词:polynomial growth; subexponential algorithm; low treewidth pattern covering
国家哲学社会科学文献中心版权所有