期刊名称:Documents de Travail du Centre d'Economie de la Sorbonne
印刷版ISSN:1955-611X
出版年度:2016
出版社:Centre d'Economie de la Sorbonne
摘要:It is known that for supermodular TU-games, the vertices of the core are the marginal vectors, and this result remains true for games where the set of feasible coalitions is a distributive lattice. Such games are induced by a hierarchy (partial ordre) on players. We propose a larger class of vertices for games on distributive lattices, called min-max vertices, obtained by minimizing or maximizing in a given order the coordinates of a core element. We give a simple formula which does not need to solve an optimization problem to compute these vertices, valid for connected hierarchies and for the general case under some restrictions. We find under which conditions two different orders induce the same vertex for every game, and show that there exist balanced games whose core has vertices which are not min-max vertices if and only if n > 4.
关键词:TU games; restricted cooperation; game with precedence constraints; core; vertex