首页    期刊浏览 2025年05月23日 星期五
登录注册

文章基本信息

  • 标题:Nonlinear Approximate Indexing for Multimedia Data
  • 本地全文:下载
  • 作者:Guang-Ho Cha
  • 期刊名称:International Journal of Software Engineering and Its Applications
  • 印刷版ISSN:1738-9984
  • 出版年度:2016
  • 卷号:10
  • 期号:11
  • 页码:121-130
  • DOI:10.14257/ijseia.2016.10.11.10
  • 出版社:SERSC
  • 摘要:This paper presents a new nonlinear approximate indexing method for high- dimensional data such as multimedia data. The new indexing method is designed for approximate similarity searches and all the work is performed in the transformed Gaussian space. In this indexing method, we first map the input space into a feature space via the Gaussian mapping, and then compute the top eigenvectors in the Gaussian space to capture the cluster structure based on the eigenvectors. We describe each cluster with a minimal hypersphere containing all objects in the cluster, derive the similarity measure for each cluster individually and construct a bitmap index for each cluster. Finally we transform the nearest neighbor query into the hyper- rectangular range query and search the clusters near the query point. The experimental results for our new indexing method show considerable effectiveness and efficiency.
  • 关键词:Nonlinear indexing; approximate indexing; Gaussian mapping; bitmap ; index; similarity search
国家哲学社会科学文献中心版权所有