首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:OBKA-FS: AN OPPOSITIONAL-BASED BINARY KIDNEY-INSPIRED SEARCH ALGORITHM FOR FEATURE SELECTION
  • 本地全文:下载
  • 作者:MUSTAFA KADHIM TAQI ; ROSMAH ALI
  • 期刊名称:Journal of Theoretical and Applied Information Technology
  • 印刷版ISSN:1992-8645
  • 电子版ISSN:1817-3195
  • 出版年度:2017
  • 卷号:95
  • 期号:1
  • 出版社:Journal of Theoretical and Applied
  • 摘要:Feature selection is a key step when building an automatic classification system. Numerous evolutionary algorithms applied to remove irrelevant features in order to make the classifier perform more accurate. Kidney-inspired search algorithm (KA) is a very modern evolutionary algorithm. The original version of KA performed more effectively compared with other evolutionary algorithms. However, KA was proposed for continuous search spaces. For feature subset selection and many optimization problems such as classification, binary discrete space is required. Moreover, the movement operator of solutions is notably affected by its own best-known solution found up to now, denoted as S_best. This may be inadequate if S_best is located near a local optimum as it will direct the search process to a suboptimal solution. In this study, a three-fold improvement in the existing KA is proposed. First, a binary version of the kidney-inspired algorithm (BKA-FS) for feature subset selection is introduced to improve classification accuracy in multi-class classification problems. Second, the proposed BKA-FS is integrated into an oppositional-based initialization method in order to start with good initial solutions. Thus, this improved algorithm denoted as OBKA-FS. Third, a novel movement strategy based on the calculation of mutual information (MI), which gives OBKA-FS the ability to work in a discrete binary environment has been proposed. For evaluation, an experiment was conducted using ten UCI machine learning benchmark instances. Results show that OBKA-FS outperforms the existing state-of-the-art evolutionary algorithms for feature selection. In particular, OBKA-FS obtained better accuracy with same or fewer features and higher dependency with less redundancy. Thus, the results confirm the high performance of the improved kidney-inspired algorithm in solving optimization problems such as feature selection.
  • 关键词:Feature Selection; Kidney-Inspired Algorithm; Mutual Information; Oppositional-Learning
国家哲学社会科学文献中心版权所有