首页    期刊浏览 2025年05月25日 星期日
登录注册

文章基本信息

  • 标题:Developing an innovative entity extraction method for unstructured data
  • 本地全文:下载
  • 作者:Waleed Zaghloul ; Silvana Trimi
  • 期刊名称:International Journal of Quality Innovation
  • 电子版ISSN:2363-7021
  • 出版年度:2017
  • 卷号:3
  • 期号:1
  • 页码:3-12
  • DOI:10.1186/s40887-017-0012-y
  • 出版社:Springer Verlag
  • 摘要:The main goal of this study is to build high-precision extractors for entities such as Person and Organization as a good initial seed that can be used for training and learning in machine-learning systems, for the same categories, other categories, and across domains, languages, and applications. The improvement of entities extraction precision also increases the relationships extraction precision, which is particularly important in certain domains (such as intelligence systems, social networking, genetic studies, healthcare, etc.). These increases in precision improve the end users’ experience quality in using the extraction system because it lowers the time that users spend for training the system and correcting outputs, focusing more on analyzing the information extracted to make better data-driven decisions.
  • 关键词:Entity extraction ; Machine learning ; Precision of extraction ; Text analytics ; Natural language processing
国家哲学社会科学文献中心版权所有