首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Joint Extraction of Entities and Relations Using Reinforcement Learning and Deep Learning
  • 本地全文:下载
  • 作者:Yuntian Feng ; Hongjun Zhang ; Wenning Hao
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2017
  • 卷号:2017
  • DOI:10.1155/2017/7643065
  • 出版社:Hindawi Publishing Corporation
  • 摘要:We use both reinforcement learning and deep learning to simultaneously extract entities and relations from unstructured texts. For reinforcement learning, we model the task as a two-step decision process. Deep learning is used to automatically capture the most important information from unstructured texts, which represent the state in the decision process. By designing the reward function per step, our proposed method can pass the information of entity extraction to relation extraction and obtain feedback in order to extract entities and relations simultaneously. Firstly, we use bidirectional LSTM to model the context information, which realizes preliminary entity extraction. On the basis of the extraction results, attention based method can represent the sentences that include target entity pair to generate the initial state in the decision process. Then we use Tree-LSTM to represent relation mentions to generate the transition state in the decision process. Finally, we employ -Learning algorithm to get control policy in the two-step decision process. Experiments on ACE2005 demonstrate that our method attains better performance than the state-of-the-art method and gets a 2.4% increase in recall-score.
国家哲学社会科学文献中心版权所有