期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2017
卷号:114
期号:38
页码:10196-10201
DOI:10.1073/pnas.1711169114
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Identified as a major biomarker for type 1 diabetes (T1D) diagnosis, zinc transporter 8 autoantibody (ZnT8A) has shown promise for staging disease risk and disease diagnosis. However, existing assays for ZnT8 autoantibody (ZnT8A) are limited to detection by soluble domains of ZnT8, owing to difficulties in maintaining proper folding of a full-length ZnT8 protein outside its native membrane environment. Through a combined bioengineering and nanotechnology approach, we have developed a proteoliposome-based full-length ZnT8 self-antigen (full-length ZnT8 proteoliposomes; PLR-ZnT8) for efficient detection of ZnT8A on a plasmonic gold chip (pGOLD). The protective lipid matrix of proteoliposomes improved the proper folding and structural stability of full-length ZnT8, helping PLR-ZnT8 immobilized on pGOLD (PLR-ZnT8/pGOLD) achieve high-affinity capture of ZnT8A from T1D sera. Our PLR-ZnT8/pGOLD exhibited efficient ZnT8A detection for T1D diagnosis with ∼76% sensitivity and ∼97% specificity ( n = 307), superior to assays based on detergent-solubilized full-length ZnT8 and the C-terminal domain of ZnT8. Multiplexed assays using pGOLD were also developed for simultaneous detection of ZnT8A, islet antigen 2 autoantibody, and glutamic acid decarboxylase autoantibody for diagnosing T1D.