期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2017
卷号:114
期号:39
页码:10467-10472
DOI:10.1073/pnas.1710235114
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:The emergence and spread of multidrug-resistant organisms (MDROs) across global healthcare networks poses a serious threat to hospitalized individuals. Strategies to limit the emergence and spread of MDROs include oversight to decrease selective pressure for MDROs by promoting appropriate antibiotic use via antibiotic stewardship programs. However, restricting the use of one antibiotic often requires a compensatory increase in the use of other antibiotics, which in turn selects for the emergence of different MDRO species. Further, the downstream effects of antibiotic treatment decisions may also be influenced by functional interactions among different MDRO species, with the potential clinical implications of such interactions remaining largely unexplored. Here, we attempt to decipher the influence network between antibiotic treatment, MDRO colonization, and infection by leveraging active surveillance and antibiotic treatment data for 234 nursing home residents. Our analysis revealed a complex network of interactions: antibiotic use was a risk factor for primary MDRO colonization, which in turn increased the likelihood of colonization and infection by other MDROs. When we focused on the risk of catheter-associated urinary tract infections (CAUTI) caused by Escherichia coli, Enterococcus , and Staphylococcus aureus we observed that cocolonization with specific pairs of MDROs increased the risk of CAUTI, signifying the involvement of microbial interactions in CAUTI pathogenesis. In summary, our work demonstrates the existence of an underappreciated healthcare-associated ecosystem and strongly suggests that effective control of overall MDRO burden will require stewardship interventions that take into account both primary and secondary impacts of antibiotic treatments.
关键词:multidrug-resistant organisms ; nursing homes ; long-term care facilities ; antibiotics ; catheter-associated urinary tract infection