首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Cross-scale effects of neural interactions during human neocortical seizure activity
  • 本地全文:下载
  • 作者:Tahra L. Eissa ; Tahra L. Eissa ; Koen Dijkstra
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2017
  • 卷号:114
  • 期号:40
  • 页码:10761-10766
  • DOI:10.1073/pnas.1702490114
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Small-scale neuronal networks may impose widespread effects on large network dynamics. To unravel this relationship, we analyzed eight multiscale recordings of spontaneous seizures from four patients with epilepsy. During seizures, multiunit spike activity organizes into a submillimeter-sized wavefront, and this activity correlates significantly with low-frequency rhythms from electrocorticographic recordings across a 10-cm-sized neocortical network. Notably, this correlation effect is specific to the ictal wavefront and is absent interictally or from action potential activity outside the wavefront territory. To examine the multiscale interactions, we created a model using a multiscale, nonlinear system and found evidence for a dual role for feedforward inhibition in seizures: while inhibition at the wavefront fails, allowing seizure propagation, feedforward inhibition of the surrounding centimeter-scale networks is activated via long-range excitatory connections. Bifurcation analysis revealed that distinct dynamical pathways for seizure termination depend on the surrounding inhibition strength. Using our model, we found that the mesoscopic, local wavefront acts as the forcing term of the ictal process, while the macroscopic, centimeter-sized network modulates the oscillatory seizure activity.
  • 关键词:multiscale interactions ; nonlinear dynamics ; seizures ; epilepsy ; feedforward inhibition
国家哲学社会科学文献中心版权所有