期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2017
卷号:114
期号:36
页码:9523-9528
DOI:10.1073/pnas.1706836114
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Birnessite, a layered-structure MnO2, is an earth-abundant functional material with potential for various energy and environmental applications, such as water oxidation. An important feature of birnessite is the existence of Mn(III) within the MnO2 layers, accompanied by interlayer charge-neutralizing cations. Using first-principles calculations, we reveal the nature of Mn(III) in birnessite with the concept of the small polaron, a special kind of point defect. Further taking into account the effect of the spatial distribution of Mn(III), we propose a theoretical model to explain the structure–performance dependence of birnessite as an oxygen evolution catalyst. We find an internal potential step which leads to the easy switching of the oxidation state between Mn(III) and Mn(IV) that is critical for enhancing the catalytic activity of birnessite. Finally, we conduct a series of comparative experiments which support our model.
关键词:birnessite MnO2 ; small polaron ; catalysis ; water oxidation