首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Linear Operators in Information Retrieval
  • 本地全文:下载
  • 作者:Hawete Hattab ; Rabeb Mbarek
  • 期刊名称:OASIcs : OpenAccess Series in Informatics
  • 电子版ISSN:2190-6807
  • 出版年度:2017
  • 卷号:56
  • 页码:23:1-23:8
  • DOI:10.4230/OASIcs.SLATE.2017.23
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In this paper, we propose a pseudo-relevance feedback approach based on linear operators: vector space basis change and cross product. The aim of pseudo-relevance feedback methods based on vector space basis change IBM (Ideal Basis Method) is to optimally separate relevant and irrelevant documents. Whereas the aim of pseudo-relevance feedback method based on cross product AI (Absorption of irrelevance) is to effectively exploit irrelevant documents. We show how to combine IBM methods with AI methods. The combination methods IBM+AI are evaluated experimentally on two TREC collections (TREC-7 ad hoc and TREC-8 ad hoc). The experiments show that these methods improve previous works.
  • 关键词:Pseudo-relevance feedback; vector space basis change; Cross product
国家哲学社会科学文献中心版权所有