首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:A Minimum Redundancy Maximum Relevance-Based Approach for Multivariate Causality Analysis
  • 本地全文:下载
  • 作者:Yawai Tint ; Yoshiki Mikami
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2017
  • 卷号:8
  • 期号:9
  • DOI:10.14569/IJACSA.2017.080902
  • 出版社:Science and Information Society (SAI)
  • 摘要:Causal analysis, a form of root cause analysis, has been applied to explore causes rather than indications so that the methodology is applicable to identify direct influences of variables. This study focuses on observational data-based causal analysis for factors selection in place of a correlation approach that does not imply causation. The study analyzes the causality relationship between a set of categorical response variables (binary and more than two categories) and a set of explanatory dummy variables by using multivariate joint factor analysis. The paper uses the Minimum Redundancy Maximum Relevance (MRMR) algorithm to identify the causation utilizing data obtained from the National Automotive Sampling System’s Crashworthiness Data System (NASS-CDS) database.
  • 关键词:Causal analysis; dummy variable; Minimum Redundancy Maximum Relevance (MRMR); multivariate analysis
国家哲学社会科学文献中心版权所有