摘要:In this study theoretical analysis of the heat and mass transfer in counter-flow recuperators used for energy recovery in air handling units (AHU) under sub-zero outdoor air temperature operating conditions is presented. The most probable variants of year-round heat exchanger operation performance, which characterized by existence of three active heat and mass transfer zones ( “dry”, “wet”, “frost” ), and effect of the latent heat of water vapour condensation on the realization of these variants was determined. It was established, that the frost tends to take place with increasing temperature effectiveness of the heat exchanger. Two main techniques of the frost prevention (preheating and bypassing the outdoor airflow) were described and analysed. The values of critical outdoor temperatures and outdoor-to-return airflow rate ratio were determined on the base of parametric frosting limits analysis conducted under different inlet return airflow conditions. The comparison of the heat recovery efficiency and additional energy consumption for the air treatment in the AHU is presented.