首页    期刊浏览 2024年11月09日 星期六
登录注册

文章基本信息

  • 标题:Learning on real robots from experience and simple user feedback
  • 其他标题:Learning on real robots from experience and simple user feedback
  • 作者:Pablo Quintía Vidal ; Roberto Iglesias Rodríguez ; Miguel Ángel Rodríguez González
  • 期刊名称:Journal of Physical Agents
  • 印刷版ISSN:1888-0258
  • 出版年度:2013
  • 卷号:7
  • 期号:1
  • 页码:57-65
  • DOI:10.14198/JoPha.2013.7.1.08
  • 语种:English
  • 出版社:Red de Agentes Fisicos
  • 摘要:In this article we describe a novel algorithm that allows fast and continuous learning on a physical robot working in a real environment. The learning process is never stopped and new knowledge gained from robot-environment interactions can be incorporated into the controller at any time. Our algorithm lets a human observer control the reward given to the robot, hence avoiding the burden of defining a reward function. Despite the highly-non-deterministic reinforcement, through the experimental results described in this paper, we will see how the learning processes are never stopped and are able to achieve fast robot adaptation to the diversity of different situations the robot encounters while it is moving in several environments.
  • 关键词:Autonomous robots; Reinforcement learning
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有