首页    期刊浏览 2025年07月16日 星期三
登录注册

文章基本信息

  • 标题:Assessing item contribution on unobservable variables’ measures with hierarchical data
  • 其他标题:Assessing item contribution on unobservable variables’ measures with hierarchical data
  • 作者:Vezzoli, Marika ; Manisera, Marica
  • 期刊名称:Electronic Journal of Applied Statistical Analysis
  • 电子版ISSN:2070-5948
  • 出版年度:2012
  • 卷号:5
  • 期号:3
  • 页码:314-319
  • DOI:10.1285/i20705948v5n3p314
  • 语种:English
  • 出版社:University of Salento
  • 摘要:This paper aims at measuring the contribution of each item used to construct composite indicators of unobservable variables when data come from multi-item scales and have a hierarchical structure. To this end, we combine the MultiLevel NonLinear Principal Components Analysis with the MultiLevel Mean Decrease in Accuracy. The first algorithm is used to realize a composite indicator of the latent variable, while the second is a variable importance measure, introduced in the context of CRAGGING, which is an ensemble method able to deal with hierarchical data. The two techniques are combined in such an extent to take account of the data structure, thus offering a new way to assess the items' contribution on the hierarchical-based unobservable variables' measure.
  • 关键词:Unobservable Variables; Variable Importance Measures; Multilevel; Nonlinear Principal Components Analysis; CRAGGING
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有