首页    期刊浏览 2025年07月13日 星期日
登录注册

文章基本信息

  • 标题:SELECTION OF THE NUMBER OF NEIGHBOURS OF EACH DATA POINT FOR THE LOCALLY LINEAR EMBEDDING ALGORITHM
  • 其他标题:SELECTION OF THE NUMBER OF NEIGHBOURS OF EACH DATA POINT FOR THE LOCALLY LINEAR EMBEDDING ALGORITHM
  • 作者:Karbauskaitė, Rasa ; Kurasova, Olga ; Dzemyda, Gintautas
  • 期刊名称:Engineering Economics
  • 印刷版ISSN:2029-5839
  • 出版年度:2007
  • 卷号:36
  • 期号:4
  • DOI:10.5755/j01.itc.36.4.11890
  • 语种:English
  • 出版社:Kaunas University of Technology
  • 摘要:This paper deals with a method, called locally linear embedding. It is a nonlinear dimensionality reduc-tion technique that computes low-dimensional, neighbourhood preserving embeddings of high dimensional data and attempts to discover nonlinear structure in high dimensional data. The implementation of the algorithm is fairly straightforward, as the algorithm has only two control parameters: the number of neighbours of each data point and the regularisation parameter. The mapping quality is quite sensitive to these parameters. In this paper, we propose a new way for selecting the number of the nearest neighbours of each data point. Our approach is experimentally verified on two data sets: artificial data and real world pictures.
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有