首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Algorithmic Methods for Concave Optimization Problems
  • 本地全文:下载
  • 作者:Xu Zhang ; Xue Tian ; Chen Wang
  • 期刊名称:American Journal of Industrial and Business Management
  • 印刷版ISSN:2164-5167
  • 电子版ISSN:2164-5175
  • 出版年度:2017
  • 卷号:07
  • 期号:07
  • 页码:944-955
  • DOI:10.4236/ajibm.2017.77067
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:In this thesis, we reformulate the original non-linear model for the LMRP. Firstly, we introduced a set of parameters to represent the non-linear part of the cost increase for a facility space allocated potential additional costs and new set of decision variables, indicating how many customers each equipment distribution. The algorithms are tested on problems with 5 to 500 potential facilities and randomly generated locations. Then using actual data to validate this new method is better. Our work was motivated by the modeling approach used in the Maximum Expected Covering Location Problem (MEXCLP). We compare new method and Lagrangian relaxation method to solve LMRP with constant customer demand rate and equal standard deviation of daily demand.
  • 关键词:LMRP;Lagrangian Method;Linearization Method
国家哲学社会科学文献中心版权所有