首页    期刊浏览 2025年02月18日 星期二
登录注册

文章基本信息

  • 标题:The P2P Risk Assessment Model Based on the Improved AdaBoost-SVM Algorithm
  • 本地全文:下载
  • 作者:Jianhui Yang ; Dongsheng Luo
  • 期刊名称:Journal of Financial Risk Management
  • 印刷版ISSN:2167-9533
  • 电子版ISSN:2167-9541
  • 出版年度:2017
  • 卷号:06
  • 期号:02
  • 页码:201-209
  • DOI:10.4236/jfrm.2017.62015
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:The improved AdaBoost-SVM algorithm is used to classify the safety and the risk from the Peers-to-Peers net loan platforms. Since the SVM algorithm is hard to deal with the rare samples and its training is slow, rule sampling is used to reduce the classify noise. Then, with the combinations of learning machine, P2P risks can be identified. The result shows that IAdaBoost algorithm can improve the risk platform classification accuracy. And the error of classification can be controlled in 5%.
  • 关键词:Peers-to-Peers;AdaBoost;SVM;The Combinations of Learning Machine;Rule Sampling
国家哲学社会科学文献中心版权所有