首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:A New Augmented Lagrangian Objective Penalty Function for Constrained Optimization Problems
  • 本地全文:下载
  • 作者:Ying Zheng ; Zhiqing Meng
  • 期刊名称:Open Journal of Optimization
  • 印刷版ISSN:2325-7105
  • 电子版ISSN:2325-7091
  • 出版年度:2017
  • 卷号:06
  • 期号:02
  • 页码:39-46
  • DOI:10.4236/ojop.2017.62004
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:In this paper, a new augmented Lagrangian penalty function for constrained optimization problems is studied. The dual properties of the augmented Lagrangian objective penalty function for constrained optimization problems are proved. Under some conditions, the saddle point of the augmented Lagrangian objective penalty function satisfies the first-order Karush-Kuhn-Tucker (KKT) condition. Especially, when the KKT condition holds for convex programming its saddle point exists. Based on the augmented Lagrangian objective penalty function, an algorithm is developed for finding a global solution to an inequality constrained optimization problem and its global convergence is also proved under some conditions.
  • 关键词:Constrained Optimization Problems;Augmented Lagrangian;Objective Penalty Function;Saddle Point;Algorithm
国家哲学社会科学文献中心版权所有