摘要:The likelihood function plays a central role in statistical analysis in relation to information, from both frequentist and Bayesian perspectives. In large samples several new properties of the likelihood in relation to information are developed here. The Arrow-Pratt absolute risk aversion measure is shown to be related to the Cramer-Rao Information bound. The derivative of the log-likelihood function is seen to provide a measure of information related stability for the Bayesian posterior density. As well, information similar prior densities can be defined reflecting the central role of likelihood in the Bayes learning paradigm.
关键词:Arrow-Pratt Theorem;Expected Utility;Information Similar Priors;Likelihood Function;Prior Stability;Score Function;Risk Aversion