首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:Local Polynomial Regression Estimator of the Finite Population Total under Stratified Random Sampling: A Model-Based Approach
  • 本地全文:下载
  • 作者:Charles K. Syengo ; Sarah Pyeye ; George O. Orwa
  • 期刊名称:Open Journal of Statistics
  • 印刷版ISSN:2161-718X
  • 电子版ISSN:2161-7198
  • 出版年度:2016
  • 卷号:06
  • 期号:06
  • 页码:1085-1097
  • DOI:10.4236/ojs.2016.66088
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:In this paper, auxiliary information is used to determine an estimator of finite population total using nonparametric regression under stratified random sampling. To achieve this, a model-based approach is adopted by making use of the local polynomial regression estimation to predict the nonsampled values of the survey variable y. The performance of the proposed estimator is investigated against some design-based and model-based regression estimators. The simulation experiments show that the resulting estimator exhibits good properties. Generally, good confidence intervals are seen for the nonparametric regression estimators, and use of the proposed estimator leads to relatively smaller values of RE compared to other estimators.
  • 关键词:Sample Surveys;Stratified Random Sampling;Auxiliary Information;Local Polynomial Regression;Model-Based Approach;Nonparametric Regression
国家哲学社会科学文献中心版权所有