首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Sparse Additive Gaussian Process with Soft Interactions
  • 本地全文:下载
  • 作者:Garret Vo ; Debdeep Pati
  • 期刊名称:Open Journal of Statistics
  • 印刷版ISSN:2161-718X
  • 电子版ISSN:2161-7198
  • 出版年度:2017
  • 卷号:07
  • 期号:04
  • 页码:567-588
  • DOI:10.4236/ojs.2017.74039
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:This paper presents a novel variable selection method in additive nonparametric regression model. This work is motivated by the need to select the number of nonparametric components and number of variables within each nonparametric component. The proposed method uses a combination of hard and soft shrinkages to separately control the number of additive components and the variables within each component. An efficient algorithm is developed to select the importance of variables and estimate the interaction network. Excellent performance is obtained in simulated and real data examples.
  • 关键词:Additive;Gaussian Process;Interaction;Lasso;Sparsity;Variable Selection
国家哲学社会科学文献中心版权所有