首页    期刊浏览 2025年04月06日 星期日
登录注册

文章基本信息

  • 标题:Estimating the Empirical Null Distribution of Maxmean Statistics in Gene Set Analysis
  • 本地全文:下载
  • 作者:Xing Ren ; Jianmin Wang ; Song Liu
  • 期刊名称:Open Journal of Statistics
  • 印刷版ISSN:2161-718X
  • 电子版ISSN:2161-7198
  • 出版年度:2017
  • 卷号:07
  • 期号:05
  • 页码:761-767
  • DOI:10.4236/ojs.2017.75053
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:Gene Set Analysis (GSA) is a framework for testing the association of a set of genes and the outcome, e.g. disease status or treatment group. The method replies on computing a maxmean statistic and estimating the null distribution of the maxmean statistics via a restandardization procedure. In practice, the pre-determined gene sets have stronger intra-correlation than genes across sets. This may result in biases in the estimated null distribution. We derive an asymptotic null distribution of the maxmean statistics based on sparsity assumption. We propose a flexible two group mixture model for the maxmean statistics. The mixture model allows us to estimate the null parameters empirically via maximum likelihood approach. Our empirical method is compared with the restandardization procedure of GSA in simulations. We show that our method is more accurate in null density estimation when the genes are strongly correlated within gene sets.
  • 关键词:Gene Set Analysis;Maxmean;Empirical Null;Mixture Model
国家哲学社会科学文献中心版权所有