首页    期刊浏览 2025年07月14日 星期一
登录注册

文章基本信息

  • 标题:Performance of Existing Biased Estimators and the Respective Predictors in a Misspecified Linear Regression Model
  • 本地全文:下载
  • 作者:Manickavasagar Kayanan ; Pushpakanthie Wijekoon
  • 期刊名称:Open Journal of Statistics
  • 印刷版ISSN:2161-718X
  • 电子版ISSN:2161-7198
  • 出版年度:2017
  • 卷号:07
  • 期号:05
  • 页码:876-900
  • DOI:10.4236/ojs.2017.75062
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:In this paper, the performance of existing biased estimators (Ridge Estimator (RE), Almost Unbiased Ridge Estimator (AURE), Liu Estimator (LE), Almost Unbiased Liu Estimator (AULE), Principal Component Regression Estimator (PCRE), r - k class estimator and r - d class estimator) and the respective predictors were considered in a misspecified linear regression model when there exists multicollinearity among explanatory variables. A generalized form was used to compare these estimators and predictors in the mean square error sense. Further, theoretical findings were established using mean square error matrix and scalar mean square error. Finally, a numerical example and a Monte Carlo simulation study were done to illustrate the theoretical findings. The simulation study revealed that LE and RE outperform the other estimators when weak multicollinearity exist s , and RE, r - k class and r - d class estimators outperform the other estimators when moderated and high multicollinearity exist for certain values of shrinkage parameters, respectively. The predictors based on the LE and RE are always superior to the other predictors for certain values of shrinkage parameters.
  • 关键词:Misspecified Regression Model;Generalized Biased Estimator;Generalized Predictor;Mean Square Error Matrix;Scalar Mean Square Error
国家哲学社会科学文献中心版权所有