首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Edge information based object classification for NAO robots
  • 本地全文:下载
  • 作者:Karl Tarvas ; Anastasia Bolotnikova ; Gholamreza Anbarjafari
  • 期刊名称:Cogent Engineering
  • 电子版ISSN:2331-1916
  • 出版年度:2016
  • 卷号:3
  • 期号:1
  • 页码:1262571
  • DOI:10.1080/23311916.2016.1262571
  • 语种:English
  • 出版社:Taylor and Francis Ltd
  • 摘要:Abstract This paper presents a research regarding the development of a computationally cheap and reliable edge information based object detection and classification system for use on the NAO humanoid robots. The work covers ground detection, edge detection, edge clustering, and cluster classification, the latter task being equivalent to object recognition. In this work, a new geometric model for ground detection, a joint edge model using two edge detectors in unison for improved edge detection, and a hybrid edge clustering model have been proposed which can be implemented on NAO robots. Also, a classification model is outlined along with example classifiers and used values.
  • 关键词:edge detection ; clustering ; random forest ; object recognition ; machine vision
国家哲学社会科学文献中心版权所有