期刊名称:Bulletin of the Institute of Heat Engineering
印刷版ISSN:2083-4187
出版年度:2015
卷号:95
期号:5
页码:100
语种:English
出版社:Warsaw University of Technology
摘要:The aim of this paper was to compare the results of energy scenarios, which were prepared by the use of PRIMES and TIMES-PL energy models for Poland. Both models have been designed for modelling the mid- and long-term development of the energy system. The paper briefly describes the PRIMES and TIMES methodology explaining both the similarities and differences of approaches in relation to modelling the power supply. Four scenarios were analysed in this study: (i) PRIMES-REF, (ii) TSAP-REF, (iii) TIMES-REF, (iv) TIMES-NUC. Although these scenarios were elaborated with the use of different modelling tools there are many analogies in the evolution of the Polish power system up to 2050. As a consequence of EU climate policy and rising carbon prices within the European Union's Emissions Trading System (ETS) we observe a fuel and technology switch towards less carbon intensive options in all scenarios. The comparison is most adequate with PRIMES-REF and TIMES-NUC due to them having the best match in modelling assumptions and input parameters. In both, electricity generation from solid fuel declines throughout the projection period. This decline is more sharp before 2030 and stabilises thereafter. The relative share of fuels in the electricity generation mix by 2050 is not much different in both scenarios. Solid fuels constitute more than 45 %. The biggest differences were found in gas, nuclear, wind and solar. The differences for nuclear, wind and solar can be explained by the system-wide constraints applied in TIMES-PL. Increased use of gas in PRIMES-REF is presumably more of a methodological nature. CO2 emissions have a similar, decreasing trend reaching ca. 45 Mt in 2050. In both scenarios ca. 39 % of electricity generated in thermal power plants in 2050 comes from units equipped with Carbon Capture and Storage (CCS). The study confirmed the robustness of the TIMES-PL model and showed that it can be used to provide valuable insights contributing to the development of Polish energy policy.
其他摘要:The aim of this paper was to compare the results of energy scenarios, which were prepared by the use of PRIMES and TIMES-PL energy models for Poland. Both models have been designed for modelling the mid- and long-term development of the energy system. The paper briefly describes the PRIMES and TIMES methodology explaining both the similarities and differences of approaches in relation to modelling the power supply. Four scenarios were analysed in this study: (i) PRIMES-REF, (ii) TSAP-REF, (iii) TIMES-REF, (iv) TIMES-NUC. Although these scenarios were elaborated with the use of different modelling tools there are many analogies in the evolution of the Polish power system up to 2050. As a consequence of EU climate policy and rising carbon prices within the European Union's Emissions Trading System (ETS) we observe a fuel and technology switch towards less carbon intensive options in all scenarios. The comparison is most adequate with PRIMES-REF and TIMES-NUC due to them having the best match in modelling assumptions and input parameters. In both, electricity generation from solid fuel declines throughout the projection period. This decline is more sharp before 2030 and stabilises thereafter. The relative share of fuels in the electricity generation mix by 2050 is not much different in both scenarios. Solid fuels constitute more than 45 %. The biggest differences were found in gas, nuclear, wind and solar. The differences for nuclear, wind and solar can be explained by the system-wide constraints applied in TIMES-PL. Increased use of gas in PRIMES-REF is presumably more of a methodological nature. CO 2 emissions have a similar, decreasing trend reaching ca. 45 Mt in 2050. In both scenarios ca. 39 % of electricity generated in thermal power plants in 2050 comes from units equipped with Carbon Capture and Storage (CCS). The study confirmed the robustness of the TIMES-PL model and showed that it can be used to provide valuable insights contributing to the development of Polish energy policy.