首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Hybrid Diffusion Steered Model for Suppressing Multiplicative Noise in Ultrasonograms
  • 作者:Suzan Kessy ; Baraka Maiseli ; Michael Kisangiri
  • 期刊名称:Signal & Image Processing : An International Journal (SIPIJ)
  • 印刷版ISSN:2229-3922
  • 电子版ISSN:0976-710X
  • 出版年度:2017
  • 卷号:8
  • 期号:4
  • 页码:1
  • DOI:10.5121/sipij.2017.8401
  • 出版社:Academy & Industry Research Collaboration Center (AIRCC)
  • 摘要:Ultrasonograms refer to images generated through ultrasonography, a technique that applies ultrasoundpulses to delineate internal structures of the body. Despite being useful in medicine, ultrasonograms usuallysuffer from multiplicative noises that may limit doctors to analyse and interpret them. Attempts to address thechallenge have been made from previous works, but denoising ultrasonograms while preserving semanticfeatures remains an open-ended problem. In this work, we have proposed a diffusion-steered model thatgives an effective interplay between total variation and Perona-Malik models. Two parameters have beenintroduced into the framework to convexify our energy functional. Also, to deal with multiplicative noise, wehave incorporated a log-based prior into the framework. Empirical results show that the proposed methodgenerates sharper and detailed images. Even more importantly, our framework can be evolved over a longertime without smudging critical image features.
  • 关键词:Denoising; ultrasound image; optimization; Perona-Malik; total variation
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有