期刊名称:Journal of Theoretical and Applied Information Technology
印刷版ISSN:1992-8645
电子版ISSN:1817-3195
出版年度:2017
卷号:95
期号:14
页码:3158
出版社:Journal of Theoretical and Applied
摘要:Question Answering System could automatically provide an answer to a question posed by human in natural languages. This system consists of question analysis, document processing, and answer extraction module. Question Analysis module has task to translate query into a form that can be processed by document processing module. Document processing is a technique for identifying candidate documents, containing answer relevant to the user query. Furthermore, answer extraction module receives the set of passages from document processing module, then determine the best answers to user. Challenge to optimize Question Answering framework is to increase the performance of all modules in the framework. The performance of all modules that has not been optimized has led to the less accurate answer from question answering systems. Based on this issues, the objective of this study is to review the current state of question analysis, document processing, and answer extraction techniques. Result from this study reveals the potential research issues, namely morphology analysis, question classification, and term weighting algorithm for question classification.
关键词:Information Retrieval; Question Answering; Question Analysis; Natural Language Processing