首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:TEXTURE PATTERN IN ABNORMAL MAMMOGRAMS CLASSIFICATION USING SUPERVISED MACHINE LEARNING TECHNIQUES
  • 本地全文:下载
  • 作者:YOUSSEF BEN YOUSSEF ; ELHASSANE ABDELMOUNIM ; ABDELAZIZ BELAGUID
  • 期刊名称:Journal of Theoretical and Applied Information Technology
  • 印刷版ISSN:1992-8645
  • 电子版ISSN:1817-3195
  • 出版年度:2017
  • 卷号:95
  • 期号:17
  • 页码:4059
  • 出版社:Journal of Theoretical and Applied
  • 摘要:The purpose of the present study is to extract pattern texture from regions of interest (ROI) on mammograms and to use texture descriptors to classify the ROI into benign or malignant mammograms. Supervised Machine Learning (SML) algorithms like Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP) are used to classify the ROI. Two types of texture descriptors (GLCM and GRLM) are extracted after cropping and resizing the ROI. The goal is to find the best texture descriptors which give best accuracy in the classification of mammogrames. Our proposed method is proved to be a highly efficient method for the diagnostic of breast cancer with high accuracy using SVM. This study proves that SVM is a consistent classifier for two mammogram databases use.
  • 关键词:Breast cancer; Computer Aide Diagnosis (CAD); Classification; Supervised Machine Learning(SML); Texture Pattern
国家哲学社会科学文献中心版权所有